日月食天象的发生有着非常严格的条件,不同类别日月食的出现及其规律性取决于地球、月球和太阳三者之间的相对位置,以及月球和地球的公转轨道特征,对日食来说,食象细节还与观测地的纬度和发生时间有关。尽管具体情况较为复杂,但天文学家已经可以对各类日月食的出现和食象做出长期而又准确的预报。
日月交食的必要条件
发生日月交食的原因说起来并不复杂。当月球运动到地球和太阳之间,且三者位于同一直线上时,月球就会把太阳发光圆面的一部分甚至全部遮去,这就发生了日食。一旦月球运动到比地球远离太阳的一侧,且日、地、月三者位于同一直线上时,地球会把照亮月球的一部分或全部阳光挡住,于是就出现月食天象。这种说法在一些科普读物以至教科书上都可以找到,不过实际情况远非如此简单。
月球本身并不发光,它只是因反射太阳光而被地球上的人看到,而被阳光照到的只有半个月球表面,未被照亮的另半个月球面是不可见的。另一方面,在任何时间地球上的观测者只能看到月球朝向地球的半个球面(月球正面),背向地球的另外半个月球面(月球背面)是看不到的。随着月球绕地球公转,太阳、地球和月球三者的相对位置不断变化,地球上的人所能看到的月球被阳光照亮的部分便时多时少,表现为蛾眉月、上弦月、满月、下弦月等,有时甚至完全隐匿不见。月球形状这种表观上的变化称为月相,月相的变化周期是一个朔望月(29.5306日)。
任何运动都是相对的,月球公转亦不例外,反映月球圆缺变化(月相)规律的朔望月,便是以太阳为参考标准所确定的月球公转运动周期。如果以远方恒星为参考标准,则月球的公转周期约为27.3217日,称为恒星月。恒星月更真实地反映了月球绕地球的公转运动周期,它与朔望月之所以存在明显的差异,是因为月球在绕地球公转的同时,还随着地球绕太阳运动。
当月球位于地球和太阳之间时,被阳光照到的半个球面就背向地球,对地球上的观测者来说月球便完全看不到了,这时的月相称为朔,又称新月;中国农历规定,朔日(含有月相为朔的那一天)为历月的初一。朔日之后,被阳光照亮的月球部分渐而转向地球,地球人能看到的月球明亮部分随之增大,渐次表现为蛾眉月、半月(上弦)、凸月等月相。当月球移动到比地球远离太阳的一侧,且地球位于月球和太阳之间,阳光照亮的半个月球面便正对着地球时,地球人可以看到正圆形的月球,这就是满月,亦称望;望日(含有月相为望的那一天)通常为农历的十五或十六,偶尔可为十七。望日之后,被阳光照亮的半个月球面逐渐偏离地球方向,地球人能看到的月球部分不断减小,依次出现凸月、半月(下弦)、蛾眉月等月相,再次回到朔日之际月球便又隐匿不见。在一个朔望月内,月相便如此周而复始、循环不已。
由月相变化的自然规律不难推知,日食必然发生在朔日(农历初一),月食一定出现在望日(农历的十五、十六甚至十七)。
但是,鉴于月球绕地球的公转轨道平面与地球绕太阳的公转轨道平面不相重合,上述论断的逆命题却不成立,这就是说朔日未必发生日食,望日不一定出现月食。月相为朔或望之际,虽然太阳、地球和月球必位于同一个平面内,但三者的位置并非必然处于一条直线上,甚至与之有较明显的偏离,而地球人便不可能在每个农历月内都可以于朔日看到1次日食,在望日看到1次月食。只有当月相为朔或望之际,太阳、地球和月球严格位于一条直线上,或者与之偏离足够小,才会发生日食或月食。
这就是地球上能看到日月食的必要条件,但还不是地球上某个地方的观测者可以看到日月食天象景观的充分条件,其中月食的情况较为简单——月食发生时处于白天时段的观测者是看不到这一天象的,而日食的可见条件则要复杂得多。
日月食的分类成因
任何物体在太阳光的照耀下都会在背向太阳的一侧拖出一条影子,地球和月球亦不例外,这就是地影和月影。由于地球、月球以及光源太阳都是有一定大小的天体,地影和月影便有本影和半影之别,其中阳光完全照不到的部分称为本影,可以接受到一部分阳光的区域称为半影。本影的外形是一个圆锥体,称为本影锥,而半影是向外发散的,两者的形状大不一样。月球或地球离开太阳越近,它们本影锥的顶角越大,但本影锥的长度越短;反之,离太阳越远,本影锥的顶角越小,而长度则越长。
由于月球公转轨道和地球公转轨道都是椭圆形的,当朔日之际月球位于近地点附近,而同时地球又恰好位于远日点附近时,月球离太阳最远,它的本影锥最长,可达38.0万公里左右。反之,如朔日时月球位于远地点,而地球又位于近日点,月球离太阳最近,月球本影锥最短,约为36.8万公里。另一方面,月球中心到地面上距月球最近点的距离大致变化在35.7万~39.9万公里之间;如果进一步考虑地面上距月球中心最远的那一点,则相应的距离变化范围约为36.3万~40.5万公里。可见,日食发生时月球本影锥有可能伸及地面,也可能不会伸及地面,具体情况因不同次日食和地球上不同观测地点而异,日食发生时的景观也因此而不同。
月食发生与地影的关系要简单得多,这是因为地球本影锥的长度大致变动在136.0万~140.7万公里之间,远远大于月地距离。
日食发生时,月球半影与地球表面相交成一个硕大的椭圆。由于地球有自转,月球又在绕地球公转,在日食从开始到结束的整个过程中,这个椭圆会在地球表面不断地移动,形成一条“食带”,宽度最大可超过6800公里,只有处于食带中的观测者才能看到日食天象;对位于食带外广大地区中的地球人来说,尽管日食发生了,此情此景他们却一无所知。
如果日食发生时月球本影锥的长度足以伸及地球表面,那么就会在上述食带中出现一条范围更窄的“全食带”,宽度通常不超过300公里,只有在全食带中才能观测到整个太阳圆面被月球完全遮去的景象——日全食。对于那些位于食带内、但却处于全食带外的观测者来说,只能看到一部分太阳圆面被月球遮去,所看到的为日偏食;越是靠近全食带,太阳圆面被月球遮去的部分越大。
要是某次日食发生时,由于种种原因本影锥的长度太短而不能到达地面,那么这时本影锥过顶点的延长部分便称为“伪本影”(宽度可超过350公里)。伪本影的外形也是一个圆锥体,其伸展方向与本影锥相反,长度比本影锥短得多。伪本影与地面也相截成一个椭圆,在这一椭圆形区域内的观测者便能观测到日环食:整个月球进入了太阳圆面的范围之内,但并不能把太阳完全遮去,在地球人看来黑色月球的周围会呈现一圈纤细的阳光亮环,伪本影越短亮环越细。日全食和日环食又合称为中心食。
对整个地球来说一次日食可长达数小时,在这一过程中月球本影锥与地球表面的相对位置是在变化的。如果在一次日食期间,本影锥在一段时间内伸及地球表面,而在另一时间段内却不能到达地面,那么对位于食带中不同地点的观测者来说,有的可以看到日全食,有的能看到日环食,这种情况便称为全环食,亦属中心食。在各类日食中以全环食最为罕见。据统计,在公元前1207年到公元2161年的3368年中,全球共计会发生日食8000次,平均每百年约有日食237.5次,其中偏食83.8次,环食77.3次,全食65.9次,全环食10.5次。
相比之下,月食的情况比日食要简单得多。当月球进入地影时便发生月食,这时朝向月球的半个地球上(也就是处于夜晚时段)的地球人都能看到月食景观。如果月球能整个进入地球本影锥的范围是为月全食,只有一部分月球进入地球本影锥时则发生月偏食;整个月球都位于地球半影区内的阶段称为半影食。如果没有特别注明,半影食通常并不计入月食总数之列。
月食出现的频数要比日食来得少,在上面提到的3368年中,共计发生了5200次月食,每百年平均仅有154.4次。
除了天象景色外,月食与日食至少有四个方面的不同:其一,月食可见区(约半个地球)比日食的食带区范围大得多。其二,日食可分为全食、偏食和环食三类,而月食则分为全食、偏食和半影食三类。其三,对月食来说,可见区内所有的人能观测到的月食过程及其各个阶段是同步发生的——同一时刻所有的人都会看到同样的食象,正可谓“海上生明月,天涯共此时”;在日食出现时,食带中不同地方观测者所看到日食过程及其各个阶段不是同时发生的,具体食象也各不相同。其四,对一次月食而言,如果是全食,所有人能看到的都是月全食,如果是偏食,则所有人都能看到月偏食景象;日食的情况则不同,对一次中心食来说,有的地方可以看到日全食美景,有的地方只能看到日偏食,如果是全环食,则有的地方还能看到日环食天象。
月球的运动规律
日食、月食天象的出现,不同次日月食的具体食象情况,皆取决于地球、月球和太阳三者的相对位置,因而就与月球绕地球公转运动的规律有关,同时也与地球绕太阳的公转轨道特征有关。为了较为深入地认识日月食出现的规律和相应细节,首先必须了解月球和地球的运动特性,这也是准确预报日月食的基础。
天文学的研究对象——天体都非常遥远,即使以离地球最近的月球来说,它到地球的平均距离已有38.4万公里之遥。太阳到地球的平均距离约为1.5亿公里,也就是1个天文单位,而冥王星到太阳的平均距离约为40天文单位,即60亿公里。至于太阳系之外的恒星和星系,它们的距离就更远了,近的动辄以百光年、千光年(1光年约等于9.5万亿公里)计,远的更可达几亿、几十亿光年甚至还要远。因此,仰望满天星斗,地球上的观测者直观上根本无法判断不同天体在距离远近上的差异,看到的实际上只是它们在“天穹”上的投影位置,而这里的“天穹”或者“天”是虚的。为了把“天”具体化,天文学上设想以观测者为球心、任意长(或单位长)为半径作一个球,称为天球,于是观测者所看到的便是天体在天球面上的投影,称为天体的视位置,而把天体视位置的变化称为天体的视运动。地球上的观测者必然参与地球的自转和公转运动,因地球自转引起的天体视运动称为周日视运动,由地球公转引起的天体视运动称为周年视运动。
太阳每天东升西落,这一现象便是因地球自转引起的太阳的周日视运动。另一方面,因地球公转,太阳每年在天球上运行一周,这就是太阳的周年视运动,它的运动轨迹称为黄道,因而黄道就是地球公转轨道平面(黄道面)与天球相交的大圆。地球赤道平面无限延伸后与天球相交的大圆称为天赤道,以区别于地球上的赤道。天赤道与黄道斜交,交角约为23°27′,称为黄赤交角。由于黄道面空间取向的变化,黄赤交角并非恒定不变,目前是每世纪约减小47″,这种减小的趋势将会保持15 000年左右,然后转为增大。
地球绕太阳的公转运动轨道是一个椭圆,椭圆半长径(即日地平均距离)约为1.496 0亿公里,偏心率为0.016 709。地球在每年1月初处于离太阳最近的位置,称为近日点,日地距离为1.471 0亿公里;每年7月初地球距离太阳最远,是为远日点,日地距离约1.521 0亿公里,可见在1年内日地距离可有约3%的变化。地球公转运动的近日点(以及远日点)并非固定不动,而是每年移动11″,运动方向与地球公转方向相同。
月球绕地球公转运动平面与天球相交的大圆称为白道,它与黄道斜交,交角平均为5°08′43″,这就是黄白交角。由于黄道面位置的变动,黄白交角会发生周期性变化,变化范围为4°57′~5°19′,变化周期约为173天。如果取黄白交角的平均值5°09′,则白道与天赤道的交角大致会变化在18°18′~28°36′之间。
在天球上,白道与黄道是两个互相斜交的大圆,它们必然交于两点,称为黄白交点,两个黄白交点间的连线称为交点线。由于太阳对月球的引力作用,黄白交点会沿着黄道不断运动,运动方向与月球公转运动方向相反,称为交点退行,退行的速率约为每年20°,黄白交点每经过18.60年(6794日)在黄道上退行一周。
月球沿椭圆形轨道绕地球运转,轨道半长径为38.4万公里,偏心率为0.054 9。因而,月球离开地球时近时远,距地球最近的一点称为近地点,近地点处的月地距离为36.3万公里,而在距地球最远的远地点处月地距离约为40.5万公里。联接近地点和远地点的直线称为拱线,也就是月球绕地球公转轨道椭圆的长轴。拱线在白道平面上的位置是不断变化的,变动方向与月球公转运动方向相同,每过8.85年(3232天)在白道平面上转过一整周。
在天文学的二体问题中,环绕一个大质量天体运动的小质量天体的运动状态,可以用六个轨道参数(或称轨道根数)完全确定。理论上说,通过对小质量天体在不同时间作三次或三次以上的观测,就可以确定这六个轨道参数,然后便可推知(预报)小天体在任意时刻所处的位置。以地-月系统为例,这六个参数可分为四类:①月球绕地球公转运动轨道的半长径和偏心率,它们分别决定了椭圆轨道的大小和形状;②黄白交角和交点线在轨道上的位置,它们决定了月球轨道面的空间取向;③月球轨道拱线在轨道面上的方向,它决定了月球公转轨道在轨道面上的取向;④月球经过近地点的时刻。
由上述情况可知,影响日、月、地三者相对位置的地球和月球运动的因素是多方面的:地球和月球的公转轨道都是椭圆而不是圆,椭圆长轴(拱线)的方向都有周期性的变化;存在黄白交角且其值是变化的,交点线的方向也有周期性的变化,而这些因素都会影响到日月食的发生和食象细节,使得日月食发生的规律变得颇为复杂。
日月交食的复杂性
由于黄道与白道斜交,每逢农历月的朔日,月球未必一定会把远方的太阳遮去(包括全部遮去或遮去一部分),也就是不一定会发生日食。同样的原因,农历每个月的望日也未必一定会出现月食。只有当农历朔日或望日之际,月球刚好位于黄白交点之一,或者与交点相距足够近,太阳、地球和月球三者才会处于或者近乎位于一直线的位置上,这时会发生日食或月食。
更具体地说,朔日或望日之时,天球上月球中心在黄道上的投影点与黄白交点之间的角距离不能超过一定的界限,否则便不会发生日食或月食,这一界限称为食限,对应不同类别的日食或月食,有不同的日食限和月食限。
黄白交角的存在是影响日月食发生的主要因素。此外,还有一些因素也会影响到日月食过程的观测细节。
对于日食来说,月球离开地球越远看上去就越小,月球本影锥越短,影锥与地球表面相交所形成的截面也越小,而地面上的全食带则越窄;一旦本影锥不能伸及地面,就不会发生日全食,只能看到日环食。相比之下,月地距离的变化对月食过程的影响较不显著,多数情况下只是影响到月食各个阶段的时间长度。
月球公转运动除了交点退行和拱线移动这两种最重要的变化特性外,还有许多微小变化。例如,月球公转轨道的偏心率并不是恒定的,它变化范围为0.0434~0.0667。根据开普勒第二定律,月球在椭圆轨道上的运动速度是不均匀的,相对匀速圆周运动时而超前、时而滞后。细节情况更为复杂。所有这些涉及月球运动特性的因素都会影响到日月交食的发生,交食发生时地球上的可观测地点和观测条件,以及日月食出现时地面观测者所能看到的交食过程——食象。
除了月球的公转运动外,地球在绕日公转轨道上的位置也会影响到日月交食过程的细节。地球离开太阳越远,地球和月球的本影锥越长,而半影向外发散的程度越小,在<敏感詞>条件相同的情况下日全食和月食阶段的时间就越长,日偏食和半影食阶段的时间越短。
月球和太阳的半径相差甚巨,日地距离和月地距离差异很大,然而它们之间却存在非常微妙的关系——从地球上看来,月球和太阳的大小是差不多的。月球半径约为3.476公里,从地球上看月球半径的张角(即月球的角半径)平均为15′43″.6,由于月地距离的变化,月球角半径变化在14′42″~16′503″之间。太阳半径约为696.000公里,从地球上看太阳的平均角半径为15′59″.6,由于日地距离的变化,太阳角半径的变化范围为15′44″~16′16″。由此可见,对地球上的观测者来说,有时月球显得比太阳来得大,有时看上去却比太阳小。在前一种情况下,如果发生日食就可能看到日全食,后者则只能出现日环食。
日食发生的细节,归根结底取决于月球影锥与地面相交所形成的截面的大小、形状,以及日食过程中该截面在地球表面上的移动情况。影锥与地面正交时,截面较小,形状为圆形,斜交时截面较大且表现为椭圆形。地球自转在赤道上的线速度最大,为每小时1670公里;纬度越高,地面点的自转运动线速度越小。月球影锥相对地球的移动方向与地球自转方向相同,正射赤道时月影锥的空间移动速度平均为每小时3672公里,而斜射时的移动速度比正射时来得大。由于地球有自转,月影锥在某地面点处的移动速度矢(即包括速率大小和运动方向)V,是其空间移动速度矢V1与该点处地球自转线速度矢V2的合成,即V=V1-V2。因此,一般而言观测地点的纬度越低(速率|V2|越大),或者日食发生时间越接近中午(速率|V1|越小),影锥相对观测地点的移动速度越慢,日全食阶段的时间就越长。不过,鉴于天赤道、黄道、白道三者不在同一平面上,具体情况相当复杂。
综上所述,决定日全食时段长度(称为食延)t的因素主要有以下几方面。
(1)日地距离D:D越长,月球的本影锥越长,本影锥与地球表面的截面越大,食延t越长。
(2)地月距离d:d越短,月球本影锥与地球表面的截面越大,t越长。
(3)观测地点的地理纬度φ:|φ|越小,即观测地点越靠近赤道,月球本影锥扫过地面的速度越慢,t越长。
(4)日全食发生的时间:越接近正午,月球本影锥扫过地面的速度越慢,t越长。
通过详细研究可知,如日全食发生在地球赤道地区的正午时间,则全食阶段最长可达7分40秒,环食阶段最长可达12分24秒,这就是中心食可能达到的最长食延的理论值。要是考虑包括偏食阶段在内的日食全过程,则最长可略超过4小时。
另外,月球公转方向与地球自转方向基本上是一致的,但月影锥的移动速度大于同一位置处的地球自转线速度,所以全食带大体上总是从西向东延伸,日全食景象最早从全食带西端出现,到全食带东端结束 |